Clinical impact of adaptive servoventilation compared to other ventilatory modes in patients with treatment-emergent sleep apnea, central sleep apnea and Cheyne–Stokes respiration

Silvia Correia a,*, Vitória Martins b, Liliana Sousa c, Joaquim Moita b, Fátima Teixeira b, José Moutinho dos Santos b

a Pneumology Department, ULS-Guara, Sousa Martins Hospital, Guarda, Portugal
b Pneumology Department, HG-CHUC, Sleep Medicine Center, Coimbra, Portugal
c Neurophysiology Department, HG-CHUC, Sleep Medicine Center, Coimbra, Portugal

Received 23 March 2014; accepted 15 August 2014
Available online 9 March 2015

Abstract

Introduction: Adaptive servoventilation is a recent ventilatory mode initially designed to treat Cheyne–Stokes respiration (CSR). Recently, the efficacy of ASV has been discussed for the treatment of central sleep apnea (CSA) and treatment-emergent central sleep apnea (treatment-emergent CSA) where other forms of traditional positive airway pressure (PAP) may be insufficient.

Objectives: To compare the clinical impact of ASV with other forms of PAP in treating patients with treatment-emergent CSA, CSA and CSR.

Methods: Medical data of all the patients who underwent polysomnography (PSG) with ASV titration were evaluated. The patients were divided into two groups according to the mode of ventilation reimbursed: ASV and PAP (AutoCPAP/CPAP/BIPAP). All patients had a minimal follow-up of 6 months. Both groups were compared in terms of symptoms, apnea hypopnea index, compliance, cardiac function and cardiovascular events.

Results: ASV titration was performed in 33 patients (30M/3F) with a mean age of 69 ± 8 years. The majority (58%) present a treatment-emergent SA and 42% a CSA and or CSR. The median initial diagnostic AHI was 46 ± 22 events/h.

After the initial diagnosis, 28 patients were treated with PAP and 5 with servoventilation. All of the patients treated with PAP were posteriorly submitted to PSG and ASV titration because of suboptimal response to PAP. Despite a clear indication for ASV, due to differences in reimbursement, 15 patients continued treatment with PAP (12 with AutoCPAP, 1 with BIPAP and 2 with CPAP) and 16 changed to ASV. Two patients were lost in follow-up.
In both groups, most of patients present a treatment-emergent SA (53% in ASV group vs. 67% in PAP group) or a CSA/CSR (29.4% in ASV group vs. 20% in PAP). After ASV titration, the mean follow-up was 25 ± 14 months. Both groups (ASV vs. PAP) were similar in terms of compliance (77 ± 2.3% vs. 88 ± 1.4%) and in terms of Epworth sleepiness scale score (6 ± 5 vs. 7 ± 4). There was a statistical difference in terms of residual AHI: mean AHI was 4 ± 3 in ASV group and 9 ± 3 in PAP group (P = 0.005). We found no differences in terms of left ventricular fractional shortening (ASV 33 ± 10% vs. PAP 32 ± 10%). Although no difference was observed between the 2 groups in terms of non-fatal cardiovascular events (4 events in each group), 2 fatal cardiovascular events occurred in the PAP group (sudden death).

Conclusions: These data confirm that ASV is an efficient treatment in patients with treatment-emergent CSA, CSA/CSR significantly decreasing residual AHI. In both groups, compliance rate was high and sleepiness improved. It is relevant that the 2 patients who died of sudden death were treated with PAP.

© 2014 Sociedade Portuguesa de Pneumologia. Published by Elsevier España, S.L.U. All rights reserved.

Introduction

Central sleep apnea is characterized by a lack of drive during sleep resulting in insufficient or absent ventilation and compromised gas exchange. The lack of respiratory efforts during cessation of airflow may lead to frequent nighttime awakenings, with consequent excessive daytime sleepiness and increased risk of adverse cardiovascular outcomes.1

Cheyne–Stokes respiration (CSR) is a disorder characterized by recurrent central apneas during sleep alternating with a crescendo-decrescendo pattern of tidal volume. It is observed in patients with congestive heart failure, usually during stages 1 and 2 non-REM sleep when ventilation is under chemical-metabolic control.2,3

In recent years, sleep physicians have recognized that some patients with obstructive sleep apnea develop central apneas or CSR after initial treatment with positive airway therapy. That sleep disorder is called treatment-emergent central sleep apnea. The significance and the prevalence of treatment-emergent SA is not clear; it ranges from 2.5% to 20%.4–10 There is some controversy around the optimal treatment of CSA syndrome and treatment-emergent central sleep apnea.

Adaptive servoventilation is a recent ventilatory mode, able to provide a dynamic adjustment of inspiratory pressure support. ASV continuously calculates a target minute ventilation, breath-by-breath, increasing or decreasing the pressure support in order to avoid transient episodes of central hypopnea/apnea after hyperventilation and associated hypocapnia.

The first commercial ASV devices became available in 2006. The device used for PSG in this study is AutoSet CS®. The device provides a fixed end-expiratory pressure adjusted to treat obstructive events and a respiratory frequency back-up rate. The inspiratory pressure is adjusted by the device in order to obtain a calculated target ventilation (90% of the patient’s recent average ventilation) of a running 3 min reference period.

The present study is a retrospective case-series comparison of the efficacy of traditional non-invasive positive pressure ventilation (PAP) and ASV in patients with diagnosis of treatment-emergent central sleep apnea, central sleep apnea and or Cheyne–Stokes respiration.

Methods

Patients

We identified all the patients referred to ASV titration at our Sleep Medicine Center. Most of the patients had previously undergone an unsuccessful PAP trial.

Definitions

The ASV titration was done by split-night PSG (SomnoStar® Sleep System). Sleep stage scoring was performed according to standard criteria of the American Association Sleep Medicine (2007). An apnea was defined as ≥90% airflow reduction for ≥10 s, and a hypopnea was defined as ≥30% reduction in airflow for ≥10 s accompanied by ≥3% desaturation from baseline. An arousal was defined as ≥3-s increase in EEG frequency following ≥10 s of stable sleep, accompanied by an increase in submental EMG activity for ≥1 s during REM sleep. The AHI was calculated as the number of apneas and hypopneas per hour of sleep. The arousal index was calculated as the number of arousals per hour of sleep. Obstructive sleep apnea syndrome was diagnosed if RDI was ≥5 events and the patient was symptomatic (daytime sleepiness, nocturnal gasping or choking, loud snoring with description of breathing interruptions) or if RDI was >15 even if patient was asymptomatic. CSA was diagnosed if the number of central apnea per hour was ≥5 and at least 50% of the total AHI was central in origin. Treatment-emergent SA was diagnosed if CPAP titration eliminated obstructive events but the residual central apnea index (CAI) was ≥5 or the CSR pattern became predominant.

Study design

After the baseline sleep study, patients diagnosed with treatment-emergent CSA, CSA or CSR were submitted
to a second PSG (SomnoStar® Sleep System) for ASV titration. Titration was performed online by the neurophysiologist technician in sleep laboratory. Medical charts were reviewed and demographic, clinical and polysomnographic data were extracted.

After PSG with ASV titration, the eligible subjects were allocated into 2 groups: patients who received flow-triggered ASV (BiPAP Auto SV Phillips and VPAP Adapt SV Resmed) and those who received PAP (AutoCPAP/CPAP/BiPAP) (REMStar Auto Philips and Auto Spirit S8/S9). Both groups had a minimal follow-up of 6 months. The selection of the ventilator mode was exclusively based on differences in reimbursement.

In the CPAP group, airway pressure was manually modulated from 6 cmH2O to the effective pressure, with a maximum of 14 cmH2O. The appropriate fixed pressure was chosen as the pressure abolishing or significantly decreasing both obstructive events (including apnea, hypopnea, and snoring) and CSR without arousal.

After a minimum time of 6 months, residual IAH, compliance, Epworth sleepiness scale, left ventricular shortening fraction and cardiovascular events were recorded. Residual AHI was given by the ventilator support device data.

Statistical methods

Statistical analysis was performed using SPSS version 17.0 for Windows. All values are shown as the means SD, and categorical variables are expressed as numbers and percentages. The baseline characteristics were compared using Student’s t test for continuous variables, whereas the Chi-square test or Fisher’s exact test was used for categorical variables. Within- and between-group comparisons of measurements were carried out using paired and unpaired Student’s t tests for normally distributed data, and the Wilcoxon-signed rank test for non-normally distributed data. Values <0.05 were considered statistically significant.

Results

Demographics and clinical findings

Thirty-three patients were included: 30 men and 3 women with an average age of 68 ± 8 years.

Patient baseline characteristics before any positive pressure therapy are summarized in Table 1. Of the 33 patients submitted to ASV titration, 16 were allocated to ASV, 15 to the PAP and 2 patients were lost in follow-up. In PAP group, 12 patients were treated with AutoCPAP, 1 with BiPAP and 2 with CPAP.

Heart failure was present in 20.6% of cases, hypertension in 53% and dysrhythmia in 12%. Twenty-nine percent of the patients had history of diabetes mellitus.

In both groups (PAP vs. ASV) there were no statistical differences in terms of age (mean 71 years ± 6 vs. 66 ± 10; P = 0.11), sex (88% male vs. 93%), BMI (mean 30 ± 4 vs. 31 ± 5; P = 0.59), and smoking habits (12% vs. 11%, respectively; P = 0.86). There were no differences in cardiorespiratory variables except for a lower PaCO2 level in the ASV group (38 ± 3 vs. 37 ± 7, respectively; P = 0.59).

Table 1 Patient baseline characteristics before any positive pressure therapy.

<table>
<thead>
<tr>
<th>Demographic characteristics</th>
<th>ASV group (n = 16)</th>
<th>PAP group (n = 15)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yr)</td>
<td>71 ± 6</td>
<td>66 ± 10</td>
<td>0.11</td>
</tr>
<tr>
<td>Body mass index (kg/m²)</td>
<td>30 ± 4</td>
<td>31 ± 5</td>
<td>0.39</td>
</tr>
<tr>
<td>Heart failure, n (%)</td>
<td>4 (29)</td>
<td>2 (13)</td>
<td>0.67</td>
</tr>
<tr>
<td>Hypertension, n (%)</td>
<td>9 (59)</td>
<td>7 (47)</td>
<td>0.08</td>
</tr>
<tr>
<td>Dysrhythmia, n (%)</td>
<td>4 (23)</td>
<td>4 (27)</td>
<td>0.13</td>
</tr>
<tr>
<td>Diabetes mellitus, n (%)</td>
<td>5 (29)</td>
<td>4 (27)</td>
<td>0.01</td>
</tr>
<tr>
<td>Stroke, n (%)</td>
<td>0 (0)</td>
<td>1 (7)</td>
<td>0.39</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sleep respiratory variables of initial diagnosis</th>
<th>ASV group (n = 16)</th>
<th>PAP group (n = 15)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>AHI (events/h)</td>
<td>44 ± 18</td>
<td>52 ± 25</td>
<td>0.34</td>
</tr>
<tr>
<td>Central apnea index (/h)</td>
<td>10 ± 12</td>
<td>4 ± 6</td>
<td>0.16</td>
</tr>
<tr>
<td>Obstructive apnea index (/h)</td>
<td>18 ± 23</td>
<td>17 ± 16</td>
<td>0.91</td>
</tr>
<tr>
<td>Mixed apnea index (/h)</td>
<td>4 ± 4</td>
<td>9 ± 15</td>
<td>0.27</td>
</tr>
<tr>
<td>Hypopnea index (/h)</td>
<td>16 ± 10</td>
<td>13 ± 10</td>
<td>0.45</td>
</tr>
<tr>
<td>Cheyne–Stokes, n (%)</td>
<td>6 (37)</td>
<td>6 (40)</td>
<td>0.55</td>
</tr>
<tr>
<td>Mean nocturnal SaO₂ (%)</td>
<td>92 ± 4</td>
<td>92 ± 4</td>
<td>0.94</td>
</tr>
<tr>
<td>Minimal nocturnal SaO₂ (%)</td>
<td>72 ± 14</td>
<td>76 ± 12</td>
<td>0.44</td>
</tr>
<tr>
<td>Epworth sleepiness scale</td>
<td>12 ± 7</td>
<td>11 ± 6</td>
<td>0.78</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Arterial blood gases</th>
<th>ASV group (n = 9)</th>
<th>PAP group (n = 7)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PaCO₂ (mmHg)</td>
<td>38 ± 3</td>
<td>37 ± 7</td>
<td>0.59</td>
</tr>
<tr>
<td>PaO₂ (mmHg)</td>
<td>89 ± 13</td>
<td>91 ± 3</td>
<td>0.56</td>
</tr>
<tr>
<td>HCO₃ (mmol/L)</td>
<td>25 ± 3</td>
<td>25 ± 3</td>
<td>0.97</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hemodynamic parameters</th>
<th>ASV group (n = 9)</th>
<th>PAP group (n = 7)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>LVFS (%)</td>
<td>35 ± 15</td>
<td>35 ± 4</td>
<td>0.96</td>
</tr>
</tbody>
</table>
After 6 months, Epworth sleepiness scale (mean 12 ± 7 vs. 11 ± 6; P = 0.39), ESS diagnostic AHI (mean 44 ± 18 vs. 52 ± 25). There was also no significant difference in terms of cardiovascular comorbidities (Table 1).

As this study is retrospective, not all the patients had an initial echocardiogram available, prior to PSG with ASV titration; in fact, echocardiographic evaluation before and after ASV titration was only available in 16 patients (9 in ASV group vs. 7 in PAP group). The median of the initial left ventricular fractional shortening fraction was 35 ± 15 in ASV group and 35 ± 4 in PAP group with no differences between them (P = 0.96).

The diagnosis that led to an ASV study was treatment-emergent SA in 59.4% (44.4% in ASV group vs. 55.6% in PAP group), CSA and/or CSR in 40.6% (61.5% ASV group vs. 38.5% in PAP).

The indication for ASV titration was a suboptimal response to PAP. The summary of polysomnographic features of split-night of ASV titration is summarized in Table 2. During polysomnography ASV titration, the mean AHI was 7 ± 10 events/h after optimal pressure for ASV titration and the mean cumulative percentage time at a pulse oximetry oxygen saturation <90% was 11 ± 27%.

After ASV titration, the mean follow-up was 25 ± 14 months. Both groups (ASV vs. PAP) were considered compliant as they used their device for more than 4 h per night and were similar: 77 ± 23% in ASV group (P = 0.191) and 88 ± 14% in PAP group (P = 0.482) (Fig. 1) (P = 0.153). The average number of hours of daily use was 6h23 ± 2h13 in ASV group and 6h59 ± 1h08 in PAP group.

In terms of sleepiness, both groups improved the Epworth sleepiness scale score after the initial diagnosis with a statistically significant difference (P = 0.016 in ASV group vs. P = 0.031 in PAP group). However, comparing only the final Epworth, no significant statistical difference was found between them: 6 ± 5 in ASV group and 7 ± 5 in PAP group (P = 0.06) (Fig. 2).

As shown in Fig. 3 there was a statistical difference in terms of residual AHI: mean AHI = 4 ± 3 in ASV group and 9 ± 3 in PAP group (P = 0.005).

We found no differences in terms of blood gases or left ventricular fractional shortening (ASV 33 ± 10% vs. PAP 32 ± 10%).

Table 3 includes a summary of cardiovascular events. There was no difference in terms of non-fatal cardiovascular events (3 events in each group) but in PAP group 2 patients died of sudden death. These 2 patients had treatment-emergent SA and the ventilator mode was CPAP in one patient and BIPAP in the other. Both of them had diabetes, hypertension and alcoholism. One suffered from heart failure.
We did not demonstrate a difference between ASV and PAP in terms of LVFS improvement but only 16 patients had cardiac function evaluation before and after PSG for ASV titration and treatment decision. Therefore, it is difficult to evaluate the effect of the 2 types of ventilation concerning cardiac function because of the small number of patients. We also did not find differences in terms of non-fatal cardiovascular events between the 2 groups but in the PAP group 2 patients died of sudden death.

There are some limitations of this study. First of all, some of the patients, because of problems due to reimbursement, were not treated with ASV although they had indication to start that mode of ventilation mode, so the number of the patients in the ASV group was small. Furthermore, as the study is retrospective, not all the patients had previously had an echocardiogram before PAP therapy so the comparison between the two ventilator modes concerning cardiac function cannot be made with confidence because of the small number of patients who had echocardiogram before and after PAP therapy.

Conclusion

ASV is an effective treatment in patients with treatment-emergent CSA, CSA/CSR significantly decreasing residual AHI. In both groups, compliance rate was high and sleepiness improved. It is clinically relevant that the 2 patients who died of sudden death were treated with PAP.

Ethical disclosures

Protection of human and animal subjects. The authors declare that the procedures followed were in accordance with the regulations of the relevant clinical research ethics committee and with those of the Code of Ethics of the World Medical Association (Declaration of Helsinki).

Confidentiality of data. The authors declare that they have followed the protocols of their work center on the publication of patient data.

Right to privacy and informed consent. The authors have obtained the written informed consent of the patients or subjects mentioned in the article. The corresponding author is in possession of this document.

Conflicts of interest

The authors have no conflicts of interest to declare.

References

