COMMENT

A role of antifibrotics in the treatment of Scleroderma-ILD?

Katerina M. Antoniou a,*, Athina Trchalaki a, Argyris Tzouvelekis b, Venerino Poletti c,d, Eirini Vasarmidi a, Petros Sfikakis e, Demosthenes Bouros b

a Department of Respiratory Medicine, Medical School, University of Crete, Heraklion, Greece
b Medical School, National and Kapodistrian University of Athens, First Academic Department of Pneumonology, Interstitial Lung Disease Unit, Athens, Greece
c,d Department of Respiratory and Thoracic Diseases AUSL della Romagna, G.B. Morgagni - L. Pierantoni Hospital, Forlì, Italy
e First Department of Propaedeutic and Internal Medicine and Joined Rheumatology Program, Medical School, National and Kapodistrian University of Athens, Laikon Hospital, Athens, Greece

Received 23 July 2019; accepted 20 August 2019

Systemic sclerosis (SSc) is a complex potentially life-threatening autoimmune disease. Interstitial Lung Disease (ILD) is a rather common manifestation of the disease, which governs morbidity and mortality, accounting for 33% of deaths. The spectrum of ILD ranges from limited lung disease, with or without clinical significance, to severe fibrosis and respiratory failure. Histopathologic subsets and imaging features of SSc-ILDs, mainly non-specific interstitial pneumonia, are related to disease outcome. While no therapeutic algorithm exists, treatment decisions are based generally on disease activity, disease extent and progression, whilst some expert physicians support the "active surveillance" approach. Merely disease extent is not a widely recognised marker for treatment initiation, as some patients with extensive disease remain stable, whilst others with limited disease, experience significant decline.

Intriguingly, ILD treatment remains challenging with no licensed therapeutic regimen. Therapy of SSc-ILD centres on controlling the inflammatory process that precedes and leads to the initiation and, partially, the progression of fibrosis. Inflammation is a targetable endpoint during the inflammatory phase before the irreversible established fibrosis. Clinical studies in Idiopathic Pulmonary Fibrosis (IPF), the most well studied ILD, have shown that fibrosis does not respond to anti-inflammatory medication and can be detrimental, when inflammation is not the predominant element.

To date, the therapeutic strategy for SSc-ILD involves induction and maintenance of remission. Cyclophosphamide (CYC) and Mycophenolate mofetil (MMF) are the two agents most commonly used. A meta-analysis of three randomized trials and six open label studies did not confirm an improvement in pulmonary function with cyclophosphamide after 12 months. Toxicity issues have led trials of other immunosuppressants as possible alternatives. MMF was found non-inferior to CYC, with a better tolerability profile. Both treatment options seemed to have an impact on other clinical parameters like the modified Rodnan Skin Score (mRSS). As immunosuppressive therapy exerts its effects on inflammatory processes, it has limited benefit...
on the fibrotic process. The proportion of patients that
develop a progressive fibrotic phenotype, resembling that
of IPF despite immunosuppressive treatment, characteristi-
cally emphasises the great unmet need in the treatment of
SSc-ILD.

In the era of novel antifibrotics, licenced for the treat-
ment of IPF, it is tempting to speculate that these agents
could have a place in the treatment of other fibrotic ILDs.
Indeed, studies regarding the pathogenesis behind other ILDs
dictate a possible common pathway that lead to fibrosis,
after the initial insult. In all ILDs, wound healing is aberrant
and leads to scarring. Following tissue injury, fibroblasts and
monocytes are recruited at site. Fibroblasts are activated to
become myofibroblasts, the key extracellular matrix (ECM)
producing cells, under the influence of pro-fibrotic mono-
cytes and macrophages.8

Nintedanib is a tyrosine kinase inhibitor that targets the
receptors platelet-derived growth factor receptor α and β,
fibroblast growth factor receptor (FGFR) 1–3, and vascular
endothelial growth factor receptor (VEGFR) that slows dis-
ease progression in patients with IPF, by reducing the annual
rate of decline in forced vital capacity (FVC). Tyrosine
kinases are enzymes that regulate important cellular func-
tions, including survival, proliferation and differentiation.9
Nintedanib inhibits progressive lung fibrosis by inhibiting
fibroblast proliferation10,11 and it has been shown to inhibit
pro-fibrotic M2 polarization of macrophages.12 The promis-
ing results that were obtained in open label trials of the first
marketed inhibitor of tyrosine kinase, namely Imatinib13 has
led several trials to be designed to investigate the efficacy
of antifibrotics in other ILDs.

The recently published SENsIS trial is the first to prove
that Nintedanib is efficacious in the treatment of SSc-
ILD in combination with background immunosuppressant
therapy.14 These results encourage the upcoming trials in
other progressive fibrotic ILDs,15 where immunosuppressive
and antifibrotics are combined. However, the results should
be interpreted with caution. The clinical significance of an
average treatment benefit of only 41 mL ties at the lower end
of the minimally important clinical difference in IPF studies
and is difficult to interpret.16 We believe that these findings
do not justify first line use of Nintedanib as Mycopheno-
late Mofetil may be equally efficacious in SSc-ILD and has
treatment benefits for systemic disease activity.

Furthermore, the small FVC treatment effect may be a
misleading average statement, concealing major benefits
in a minority patient sub-group with progressive disease.
Nintedanib may have an important future role in patients
with more extensive disease on high-resolution computed
tomography (HRCT), at higher risk of disease progression.
However, if sub-analyses in higher risk disease are to be
informative, the methodology of HRCT scoring will need to
be scrutinised. Based on other series,17 the HRCT extent of
SSc-ILD was strikingly higher than expected from the stated
FVC and Diffusing capacity of the lung for carbon monoxide
(DLco) values.

In conclusion, the diagnosis of ILD alone may not be con-
considered adequate for the initiation of anti-fibrotic therapy
in SSc. Accurate staging of the ILD, with respect to dis-
ease behavior may be required to identify the sub-group of
patients that would benefit more from antifibrotic therapy.

Conflict of interest

The authors have no conflicts of interest to declare.

References

2. Wells AU, Margaritopoulos GA, Antoniou KJ, Denton C. Inter-
stitial lung disease in systemic sclerosis. Semin Respir Crit Care
4. Bourdos D, Wells AU, Nicholson AG, Colby TV, Polychronopoulos
V, Pantelidis P, et al. Histopathologic subsets of fibrosing alve-
olitis in patients with systemic sclerosis and their relationship
5. Prednisone. Azathioprine, and N-Acetylcysteine for pulmonary
6. Nannini C, West CP, Erwin PJ, Matteson EL. Effects of cyclophos-
phamide on pulmonary function in patients with scleroderma
and interstitial lung disease: a systematic review and meta-
analysis of randomized controlled trials and observational
7. Liossis SN, Bounas A, Andonopoulos AP. Mycophenolate mofetil
as first-line treatment improves clinically evident early
8. Wynn TA, Vannella KM. Macrophages in tissue repair, regenera-
9. Krause DS, Van Elten RA. Tyrosine kinases as targets for cancer
10. Sato S, Shinohara S, Hayashi S, Morizumi S, Abe S, Okazaki
H, et al. Anti-fibrotic efficacy of nintedanib in pulmonary
fibrosis via the inhibition of fibrocyte activity. Respir Res.
S, et al. Mode of action of nintedanib in the treatment of idio-
Jouveau S, et al. Alteration of human macrophage phenotypes
by the anti-fibrotic drug nintedanib. Int Immunopharmacol.
13. Bourina VK, Evangelou K, Sfikakis PP. Therapeutic inhibition
of tyrosine kinases in systemic sclerosis: a review of published
experience on the first 108 patients treated with imatinib.
MD, et al. Nintedanib for systemic sclerosis-associated intersti-
15. Flihartly KR, Brown KK, Wells AU, Clerisme-Beaty E, Collard
HR, Cottin V, et al. Design of the PF-ILD trial: a double-blind,
randomised, placebo-controlled phase III trial of nintedanib in
patients with progressive fibrosing interstitial lung disease. BMJ
16. du Bois RM, Weycker D, Albera C, Bradford WZ, Costabel U,
Kartashov A, et al. Forced vital capacity in patients with idiopathic
pulmonary fibrosis: test properties and minimal clinically
important difference. Am J Respir Crit Care Med. 2011;184(12):
1382–9.
17. Goh HS, Desai SR, Veeraraghavan S, Hansell DM, Copley SJ,
Maher TM, et al. Interstitial lung disease in systemic sclero-
sis: a simple staging system. Am J Respir Crit Care Med.