Journal Information
Vol. 9. Issue 6.
Pages 481-492 (November - December 2003)
Share
Share
Download PDF
More article options
Vol. 9. Issue 6.
Pages 481-492 (November - December 2003)
ARTIGO ORIGINAL/ORIGINAL ARTICLE
Open Access
O epitélio respiratório em ratos Wistar nascidos em ruído de baixa frequência e expostos a ruído adicional
Respiratory epithelia in Wistar rats born in low frequency noise plus varying amounts of additional exposure
Visits
4913
Nuno A.A. Castelo Branco1, Emanuel Monteiro2, António Costa e Silva3, José Manuel Reis Ferreira4, Mariana Alves-Pereira5
1 Médico Anátomo-Patologista. Presidente do Conselho Científico. Centro da Performance Humana, Alverca do Ribatejo
2 Técnico de Anatomia. Instituto de Ciências Biomédicas Abel Salazar. Universidade do Porto
3 Técnico de Anatomia. Instituto de Ciências Biomédicas Abel Salazar. Universidade do Porto
4 Médico Pneumologista. Unidade de Estudo Funcional Respiratório. Hospital da Força Aérea, Lisboa
5 Mestre em Engenharia Biomédica. Doutoranda, Departamento de Ciências e Engenharia do Ambiente. Universidade Nova de Lisboa
This item has received

Under a Creative Commons license
Article information
RESUMO

A exposição ao ruído de baixa frequência (RBF) (≤500Hz, incluindo os infra-sons) provoca lesões no epitélio do aparelho respiratório. Em ratos cuja gestação ocorreu sob o efeito de RBF, e que subsequentemente passaram um ano em silêncio, observaram-se lesões estabilizadas e definitivas do epitélio respiratório. Neste estudo, investigam-se as lesões que se observam em ratos nascidos em RBF e expostos a RBF adicional. Ratos nascidos em RBF foram posteriormente expostos a RBF adicional antes de serem sacrificados: 145h (Grupo A), 235h (Grupo B), 2213h (Grupo C), 2438h (GroupD), 4399h (Grupo E) e 5304h (Grupo F). Todos os animais foram tratados de acordo com a norma aplicável (86/609/CE). Fragmentos do epitélio respiratório foram processados para microscopia óptica e electrónica. No grupo A, as microvilosidades das células em escova (CE) juntam-se, deixando de ter a distribuição uniforme observada nos ratos de controlo; no grupo B as microvilosidades das CE aglomeram-se e, nos restantes grupos, apresentam-se fundidas. As rosetas (anéis de células secretoras centradas numa CE) são visíveis nos grupos A-D e tornam-se difíceis de identificar nos grupos E, F. A quantidade de cílios “ceifados” aumenta com o tempo de exposição, bem como as imagens de desdiferenciação celular. O RBF produz um efeito nefasto sobre o epitélio respiratório destes ratos.

REV PORT PNEUMOL 2003; IX (6): 481-492

Palavras-chave:
ruído de baixa frequência
doenças do colagénio
célula em escova
cílios
microvilosidade
desdiferenciação
doença vibroacústica
metaplasia
displasia
carcinoma pavimentocelular
ABSTRACT

Earlier studies of Wistar rat respiratory epithelia exposed to low frequency noise (LFN) (≤500Hz, including infrasound) showed that LFN effects trauma on the respiratory tract. In rats gestated and born in LFN environments, trauma was still evident after spending 1 year in silence. This report studies Wistar rats gestated and born in a LFN environment and exposed to additional LFN. Wistar rats were gestated and born while exposed to LFN. After birth, the following groups were exposed to LFN for an additional 145hrs (Group A), 235hrs (Group B), 2213hrs (Group C), 2438hrs (Group D), 4399hrs (Group E), and 5304hrs (Group F). All animals were treated in accordance with 86/609/EC. Respiratory epithelial fragments were prepared for light and scanning/transmission electron microscopy. Group A brush cell (BC) microvilli tended to group together; in Group B they were clearly clustered together, and in Groups C-F they became fused. Rosetta structures (rings of secretory cells centered on a BC) were visible in Groups A-D and difficult to identify in Groups E,F. The amount of sheared cilia increased with exposure time, as did the images of cellular dedifferentiation. LFN exposure induces severe trauma on the respiratory epithelial cells in these rats.

REV PORT PNEUMOL 2003; IX (6): 481-492

Key-words:
low frequency noise
brush cell
collagen diseases
ciliated cell
microvilli
cilia
de-differentiation
vibroacoustic disease
metaplasia
displasia
squamous-cell carcinoma
Full text is only aviable in PDF
REFERENCES
[1.]
N.A.A. Castelo Branco.
The clinical stages of vibroacoustic disease.
Aviat Space Environ Med, 70 (1999), pp. A32-A39
[2.]
N.A.A. Castelo Branco, E. Rodriguez Lopez, M. Alves-Pereira, D.R. Jones.
Vibroacoustic disease: some forensic aspects.
Aviat Space Environ Med, 70 (1999), pp. A145-A151
[3.]
N.A.A. Castelo Branco, E. Rodriguez Lopez.
The vibroacoustic disease – An emerging pathology.
Aviat Space Environ Med, 70 (1999), pp. A1-A6
[4.]
W. Marciniak, E. Rodriguez, K. Olsowska, I. Botvin, A. Araujo, F. Pais, C. Soares Ribeiro, A. Bordalo, J. Loureiro, E. Prazeres De Sá, D. Ferreira, M.S.N.A.A. Castelo Branco, N.A.A. Castelo Branco.
Echocardiography in 485 aeronautical workers exposed to different noise environments.
Aviat Space Environ Med, 70 (1999), pp. A46-A53
[5.]
A. Araújo, F. Pais, J.M.C. Lopo Tuna, M. Alvespereira, N.A.A. Castelo Branco.
Echocardiography in noise-exposed flight crew.
pp. 1007-1010
[6.]
R. Torres, G. Tirado, A. Roman, R. Ramirez, H. Colon, A. Araújo, F. Pais, W. Marciniak, J. Nóbrega, E.S.Á.A. Bordalo, J.M.C. Lopo Tuna, M.S.N.A.A. Castelo Branco, M. Alves-Pereira, N.A.A. Castelo Branco.
Vibroacoustic disease induced by long-term exposure to sonic booms.
pp. 1095-1098
[7.]
N.A.A. Castelo Branco, M. Alves-Pereira, J. Martins Dos Santos, E. Monteiro.
SEM and TEM study of rat respiratory epithelia exposed to low frequency noise.
pp. 505-533
[8.]
J.M. Reis Ferreira, A.R. Couto, N. Jalles-Tavares, M.S.N. Castelo Branco, N.A.A. Castelo Branco.
Airflow limitations in patients with vibroacoustic disease.
Aviat Space Environ Med, 70 (1999), pp. A63-A69
[9.]
N.A.A. Castelo Branco.
The respiratory system as a target of low frequency noise. Reports on human and animal models.
pp. 1501-1508
[10.]
D. Hofer, D. Drenckhahn.
Cytoskeleton markers allowing discrimination between brush cells and other epithelial cells of the gut including enteroendocrine cells.
Histochem Cell Biol, 105 (1996), pp. 405-412
[11.]
B. Martineau-Doizé, I. Caya.
Ultrastructural characterization of the nasal respiratory epithelium in the piglet.
[12.]
A. Gebhard, A. Gebert.
Brush cells of the mouse intestine possess a specialized glycocalyx as revealed by quantitative lectin histochemistry: further evidence for a sensory function.
J Histochem Cytochem, 47 (1999), pp. 799-808
[13.]
M.J. Silva, A. Dias, A. Barreta, P.J. Nogueira, N.A.A. Castelo Branco, M.G. Boavida.
Low frequency noise and whole-body vibration cause increased levels of sister chromatid exchange in splenocytes of exposed mice.
Teratogen Carcinogen Mutagen, 22 (2002), pp. 195-203
[14.]
M.J. Silva, A. Carothers, N.A.A. Castelo Branco, A. Dias, M.G. Boavida.
Increased levels of sister chromatid exchanges in military aircraft pilots.
Mut Res, 44 (1999), pp. 129-134
[15.]
M.J. Sanderson, E.R. Dirksen, P. Satir.
Electron microscopy of respiratory tract cilia.
Electron Microscopy of the Lung, pp. 54
[16.]
C. Zagalo, A.P. Águas, A. Sousa Pereira, E. Monteiro, N.R. Grande, N.A.A. Castelo Branco.
Bronchial reactivity in VAD patients and morphological changes in rodent brush cells.
Aviat Space Environ Med, 72 (2001), pp. 253
[17.]
C. Zagalo, N.A.A. Castelo Branco, E. Monteiro, M. Alves-Pereira, A.P. Águas, A.S. Pereira, N.R. Grande.
Low fequency noise exposed rat trachea: a neuroendocrine function for the respiratory brush cell?.
pp. 320-321
[18.]
N.A.A. Castelo Branco.
A unique case of vibroacoustic disease. A tribute to an extraordinary patient.
Aviat Space Environ Med, 70 (1999), pp. A27-A31
[19.]
N.A.A. Castelo Branco, A.P. Águas, A. Sousa Pereira, E. Monteiro, J.I.G. Fragata, F. Tavares, N.R. Grande.
The human pericardium in vibroacoustic disease.
Aviat Space Environ Med, 70 (1999), pp. A54-A62
[20.]
N.A.A. Castelo Branco, A. Águas, A. Sousa Pereira, E. Monteiro, J.I.G. Fragata, N.R. Grande.
The pericardium in noise-exposed individuals.
Internoise 2001, pp. 1003-1006
[21.]
Y. Matsumoto, M. Kawabe, T. Yasue, M. Yuguchi, I. Yoshida.
Two cases of scleroderma associated with vibration syndrome.
Nippon Hifuka Gakkai Zasshi, 99 (1989), pp. 155-161
[22.]
Y. Matsumoto, T. Yasue, H. Miyagawa, N. Mizuno, I. Yoshida.
An immunoserological study of patients with vibration syndrome.
Int Arch Occup Environ Health, 63 (1992), pp. 537-539
[23.]
A.P. Águas, N. Esaguy, A.P. Castro, N.R. Grande, N.A.A. Castelo Branco.
Acceleration of lupus erythematosus-like processes by low frequency noise in the hybrid NZB/W mouse model.
Aviation Space Environmental Medicine, 70 (1999), pp. A132-A136
[24.]
A. Cohen.
The influence of a company hearing conservation program on extra-auditory problems in workers.
J Safety Res, 8 (1976), pp. 146-162
[25.]
COLE JN, MOHR GC, GUILD EG, VON GIERKE HE. The effects of low frequency noise on man as related to the Apollo Space Program. AMRL Memorandum B-66.
[26.]
G.C. Mohr, J.N. Cole, E. Guild, H.E. Von Gierke.
Effects of low-frequency and infrasonic noise on man.
Aerospace Med, 36 (1965), pp. 817-824
Copyright © 2003. Sociedade Portuguesa de Pneumologia/SPP
Pulmonology
Article options
Tools

Are you a health professional able to prescribe or dispense drugs?