Journal Information
Vol. 11. Issue 2.
Pages 111-133 (March - April 2005)
Share
Share
Download PDF
More article options
Vol. 11. Issue 2.
Pages 111-133 (March - April 2005)
Artigo Original/Original Article
Open Access
Doseamento das granzimas A e B na sarcoidose pulmonar (estudo experimental)
Granzymes A and B in pulmonary sarcoidosis (experimental study)
Visits
5540
Marília Dourado1, Joana Bento2, Luís Mesquita3, Alcide Marques4, Sofia Vale-Pereira5, Ana Bela Sarmento Ribeiro6, Anabela Mota Pinto7
1 Professora Auxilar de Fisiopatologia/Patologia Geral da Faculdade de Medicina da Universidade de Coimbra
2 Aluna da Licenciatura em Medicina, na Faculdade de Medicina da Universidade de Coimbra
3 Técnico Superior de 1ª Classe, Centro de Pneumologia do Hospital da Universidade de Coimbra
4 Assistente Hospitalar Graduada de Pneumologia, Centro de Pneumologia do Hospital da Universidade de Coimbra
5 Técnica Superior de 2ª Classe, Centro de Pneumologia do Hospital da Universidade de Coimbra
6 Professora Auxilar de Biologia Molecular/Bioquímica da Faculdade de Medicina da Universidade de Coimbra
7 Professora Associada de Fisiopatologia/Patologia Geral da Faculdade de Medicina da Universidade de Coimbra.
This item has received

Under a Creative Commons license
Article information
Resumo

A sarcoidose é uma doença granulomatosa crónica de etiologia desconhecida. Atinge todos os órgãos e sistemas, particularmente o pulmão. O doseamento sérico da enzima de conversão da angiotensina (SACE) e da lisozima são exames complementares que contribuem para o seu diagnóstico e monitorização laboratorial. É desejável que outros marcadores possam optimizar a informação obtida com estes parâmetros. As granzimas A e B, produzidas por diversas células, poderão modular o turnover dos granulomas sarcoidóticos, tornando-se úteis como marcadores da doença.

Objectivos: Dosear as granzimas A e B e avaliar o seu interesse como marcadores laboratoriais de sarcoidose. Paralelamente, dosear a SACE e a lisozima, marcadores reconhecidos da doença.

Material e métodos: Indivíduos de ambos os sexos: Controlo normal (CN), n=30; controlo-doente (CD), n=21 (patologia pulmonar não granulomatosa); grupo-doente (D), n=11 (doentes com sarcoidose pulmonar).

Recolheram-se amostras de sangue periférico para obter soro que se separou por tubos identificados e guardados a –30ºC.

Doseou-se a SACE por espectrofotometria e a lisozima por turbidimetria; as granzimas A e B por ELISA.

Resultados: A actividade de SACE está significa-tivamente aumentada em D, comparativamente com CN e CD. A actividade da lisozima está significati-vamante aumentada nos grupos D e CD comparativamente com CN. A granzima B está significati-vamente diminuída nos grupos CD e D relativamente ao CN; a granzima A demonstrou diminuição significativa em D comparativamente com CN. Sugere-se que a diminuição das granzimas, na sarcoidose, poderá relacionar-se com resposta imunoin-flamatória local ineficaz relacionada com a formação do granuloma. Há necessidade de alargar o estudo também ao LLBA.

Rev Port Pneumol 2005; XI (2): 111-133

Palavras-chave:
Sarcoidose
diagnóstico laboratorial
granzima A
granzima B
Abstract

Sarcoidosis is a systemic disease of unknown aetiology, morphologically characterized by well-formed epithelioid granulomas, which show little or no cen-tral necrosis. These may be present in any organ or tissue. The lung is the most frequently and promi-nently involved target.

The granuloma is often very sharply demarcated from the adjacent tissue and is surrounded by a mantle of lymphocytes, which mediate lysis of target cells by various mechanisms, including exocytosis of lytic proteins, perforins and granzymes.

Sarcoidosis laboratorial diagnosis is usually made by SACE and Lisozyme dosages. The granzymes A and B could be two other markers of the disease, since the sarcoidosis granuloma is rich in cytotoxic and NK cells.

An ELISA Kit was used to measure Granzyme A and B in serum of a normal control group (NC) (n=30), and in two groups with lung pathology: one without sarcoidosis, disease control (DC) (n=21) and other with sarcoidosis (S) (n=11).

Our results showed that SACE activity is significantly augmented in S group comparing with NC and DC, respectively: 82,6±32,7/31,9±17,8 - p=0,00017 and 82,6±32,7/31,9±17,8 - p=0,00024. Lisozyme activity is significantly augmented in S and DC groups comparing with NC. Granzyme B showed a significant decrease in DC and S groups comparing with NC. Granzyme A showed a significant decrease between S/NC groups.

Our results suggest that the decrease of Granzyme A and B in sarcoidotic patients could be related to an ineffective inflammatory local response related to the formation of sarcoidosis granulomas. More studies are needed, particularly in BAL.

Rev Port Pneumol 2005; XI (2): 111-133

Key words:
Sarcoidosis
laboratorial diagnosis
granzyme A
granzyme B
Full text is only aviable in PDF
Bibliografia/Bibliography
[1.]
Anders Eklund.
Aetiology, pathogenesis and treatment of sarcoidosis.
J Inter Med, 253 (2003), pp. 2-3
[2.]
R.M. Du Bois, N. Goh, D. McGrath, P. Cullinan.
Is there a role for microorganisms in the pathogenesis of sar-coidosis?.
J Int Med, 253 (2003), pp. 4-17
[3.]
Neville Woolf.
Some specific granulomatous disor-ders.
Pathology - Basic and Systemic, pp. 157-172
[4.]
Alan Stevens, James Lowe.
Tissue responses to dam-age.
Pathology, 2nd ed, pp. 35-60
[5.]
Manfred Schürmann, P. Reichel, B. Müller-Myhsok, T. Dieringer, K. Wurm, M. Schlaak, et al.
Angiotensin-converting enzyme (ACE) gene polymorphisms and familial occurrence of sarcoidosis.
J Int Med, 249 (2001), pp. 77-83
[6.]
Manfred W. Ziegenhagen, J. Müller-Quernheim.
The cytokine network in sarcoidosis and its clinical relevance.
J Int Med, 253 (2003), pp. 18-30
[7.]
Benjamin A. Rybicki, M. Major, J. Popovich Jr., M.J. Maliarik, M.C. Iannuzzi.
Racial differences in sarcoidosis inci-dence: a 5-year study in a health maintenance organiza-tion.
Am J Epidemiol, 145 (1997), pp. 234-241
[8.]
D.S. McGrath, Z. Daniil, du Foley, J.L. Bois, P.A. Lympany, P. Cullinan, R.M. du Bois.
Epidemiology of familial sarcoidosis in the UK.
Thorax, 55 (2000), pp. 751-754
[9.]
Benjamin A. Rybicki, M.C. Iannuzzi, M.M. Frederick, B.W. Thompson, M.D. Rossman, E.A. Bresnitz, et al.
Familial aggregation of sarcoidosis. A case-control etiologic study of sarcoidosis (ACCESS).
Am J Resp Crit Care Med, 164 (2001), pp. 2085-2091
[10.]
J. Müller-Quernheim.
Sarcoidosis: immunopatho-genetic concepts and their clinical application.
Eur Resp J, 12 (1998), pp. 716-738
[11.]
M. Luisetti, A. Beretta, L. Casali.
Genetic aspects in sarcoidosis.
Eur Resp J, 16 (2000), pp. 768-780
[12.]
David R. Moller.
Treatment of sarcoidosis – from a basic science point of view.
J Int Med, 253 (2003), pp. 31-40
[13.]
H. Yeager Jr., M.C. Williams, J.F. Beekman, T.C. Bayly, B.L. Beaman.
Sarcoidosis: analysis of cells obtained by bronchial lavage.
Am Rev Resp Dis, 116 (1977), pp. 951-954
[14.]
Gary W. Hunninghake, R.G. Crystal.
Pulmonary sar-coidosis: a disorder mediated by excess helper T-lymphocyte activity at sites of disease activity.
N Engl J Med, 305 (1981), pp. 429-434
[15.]
C. Agostini, G. Semenzato.
Cytokines in sarcoidosis.
Semin Resp Infect, 13 (1998), pp. 184-196
[16.]
David R. Moller, J.D. Forman, M.C. Liu, P.W. Noble, B.M. Greenlee, P. Vyas, et al.
Enhanced expression of IL-12 associated with Th1 cytokine profiles in active pulmonary sarcoidosis.
J Immunol, 156 (1996), pp. 4952-4960
[17.]
Stephen W. Chensue, K. Warmington, J. Ruth, P. Lincoln, M.-C. Kuo, S.L. Kunkel.
Cytokine responses during mycobacterial and schistosomal antigen-induced pulmonary granuloma formation. Production of Th1 and Th2 cytokines and relative contribution of tumor necrosis factor.
Am J Pathol, 145 (1994), pp. 1105-1113
[18.]
Ian M. Orme, A.M. Cooper.
Cytokine/chemokine cascade in immunity to tuberculosis.
Immunol Today, 20 (1999 Jul), pp. 307-312
[19.]
J. Vestbo, K. Viskum.
Respiratory symptoms at presentation and long-term vital prognosis in patients with pulmonary sarcoidosis.
Sarcoidosis, 11 (1994), pp. 123-125
[20.]
K. Miura, K. Takahashi, Y. Fukushi.
Role of biochemical markers in Sarcoidosis (Abstract).
Nippon Rinsho, 60 (2002), pp. 1741-1746
[21.]
M. Grosso, M.A. Margollicci, E. Bargagli, Q.R. Buccoliero, A. Perrone, D. Galimberti, G. Morgese, P. Balestri, P. Rottoli.
Serum levels of chitotriosidase as a marker of disease activity clinical stage in sarcoidosis.
Scand J Lab Invest, 64 (2004), pp. 57-62
[22.]
Guy M. Tremblay, A.M. Wolbink, Y. Cormier, C.E. Hack.
Granzyme activity in the inflammed lung is not controlled by endogenous serine proteinase inhibitors.
J Immunol, 165 (2000), pp. 3966-3969
[23.]
Barbara J. Johnson, E.O. Costelloe, D.R. Fitzpatrick, J.B.A.G. Haanen, T.N.M. Schumacher, L.E. Brown, A. Kelso.
Single-cell perforin and granzyme expression reveals the anatomical localization of effector CD8+ T cells in influenza virus-infected mice.
PNAS, 100 (2002), pp. 2657-2662
[24.]
Julián Pardo, S. Balkow, A. Anel, M.M. Simon, Eur J. Immunol.
The differential contribution of granzyme A and granzyme B in cytotoxic T lymphocyte-mediated apoptosis is determined by the quality of target cells.
[25.]
D. Masson, J. Tschopp.
A family of serine esterases in lytic granules of cytolytic T lymphocytes.
Cell, 49 (1987), pp. 679-685
[26.]
Mark J. Smyth, J.A. Trapani.
Granzymes: exogenous proteinases that induce target cell apoptosis.
Immunol Today, 16 (1995), pp. 202-206
[27.]
Satoru Hashimoto, A. Kobayashi, K. Kooguchi, Y. Kitamura, H. Onodera, H. Nakajima.
Upregulation of two death pathways of perforin/granzyme and FasL/ Fas in septic acute respiratory distress syndrome.
Am J Resp Crit Care Med, 161 (2000), pp. 237-243
[28.]
Christof Wagner, C. Iking-Konert, B. Denefleh, S. Stegmaier, F. Hug, G.M. Hänsch.
Granzyme B and perforin: constitutive expression in human polymorphonuclear neutrophils.
Blood, 103 (2004), pp. 1099-1104
[29.]
Kathrin Hochegger, P. Eller, A.R. Rosenkranz.
Granzyme A: an additional weapon of human polymorphonuclear neutrophils (PMNs).
[30.]
Shi Ruili, J. Yang, A. Jaramillo, N.S. Steward, A. Aloush, E.P. Trulock, G.A. Patterson, M. Suthanthiran, T. Mohanakumar.
Correlation between interleukin-15 and granzyme B expression and acute lung allograft rejection.
Transplant Immunol, 12 (2004), pp. 103-108
[31.]
S. Shresta, J.W. Heusel, D.M. Macivor, R.L. Wesselschmidt, J.H. Russel, T.J. Ley.
Granzyme B plays a critical role in cytotoxic lymphocyte-induced apoptosis.
Immunol Rev, 146 (1995), pp. 211
[32.]
Li Baogui, C. Hartono, R. Ding, V.K. Sharma, R. Rasmawamy, B. Qian, et al.
Noninvasive diagnosis of renal-allograft rejection by measurement of messenger RNA for perforin and granzyme B in urine.
N Engl J Med, 344 (2001), pp. 947-954
[33.]
Jürgen Strehlau, M. Pavlakis, M. Lipman, M. Shapiro, L. Vasconcellos, W. Harmon, T.B. Strom.
Quantitaive detection of immune activation transcripts as a diagnostic tool in kidney transplantation.
Proc Natl Acad Sci USA, 94 (1997), pp. 695-700
[34.]
Lieberman Judy, Z. Fan.
Nuclear war: the granzyme A-bomb.
Curr Opin Immunol, 15 (2003), pp. 553-559
[35.]
M.M. Simon, M.D. Kramer, M. Prester, S. Gay.
Mouse T-cell associated serine proteinase 1 degrades collagen type IV: a structural basis for migration of lymphocytes through vascular basement membranes.
Immunology, 73 (1991), pp. 117-119
[36.]
Irmler Martin, S. Hertig, H.R. MacDonald, R. Sadoul, J.D. Becherer, A. Proudfoot, R. Solari, J. Tschopp.
Granzyme A is an interleukin 1 ß-converting enzyme.
J Exp Med, 181 (1995), pp. 1917-1922
[37.]
Laurie E. Sower, C.J. Froelich, N. Allegretto, P.M. Rose, W.D. Hanna, G.R. Klimpel.
Extracellular activities of human granzyme A. Monocyte activation by granzyme Aversus a-trombin.
J Immunol, 156 (1996), pp. 2585-2590
[38.]
Laurie E. Sower, G.R. Klimpel, W. Hanna, C.J. Froelixch.
Extracellular activities of human granzymes. I. Granzyme A induces IL and IL8 production in fibroblast and epithelial cell lines.
Cell Immunol, 171 (1996), pp. 159-163
[39.]
Hana S. Suidan, K.J. Clemetson, M. Brown-Luedi, S.P. Niclou, J.M. Clemetson, J. Tschopp, D. Monard.
The serine protease granzyme A does not induce platelet aggregation but inhibits responses triggered by thrombin.
Biochem J, 315 (1996), pp. 939-945
[40.]
Christopher J. Froelich, X. Zhang, J. Turbov, D. Hudig, U. Winkler, W.L. Hanna.
Human granzyme B degrades aggrecan proteoglycan in matrix synthetized by chondrocytes.
J Immunol, 151 (1993), pp. 7161-7171
[41.]
M.M. Simon, H.G. Simon, U. Fruth, J. Epplen, H.K. Müller Hermelink, M.D. Kramer.
Cloned cytolytic T-effector cells and their malignant variants produce an extracellular matrix degrading trypsin-like serine proteinase.
Immunology, 60 (1987), pp. 219-230
[42.]
Elisabeth H.A. Spaeny-Dekking, W.L. Hanna, A.M. Wolbink, P.C. Wever, A.J. Kummer, A.J.G. Swaak, et al.
Extracellular granzymes A and B in humans: detection of native species during CTL responses in vitro and in vivo.
J Immunol, 160 (1998), pp. 3610-3616
[43.]
Kai Bratke, B. Böttcher, K. Leeder, S. Schmidt, M. Küpper, J.C. Virchow, W. Luttmann.
Increase in granzyme B+ lymphocytes and soluble granzyme bronchoalverolar lavage of allergen challenged patients with atopic asthma.
Clin Exp Immunol, 136 (2004), pp. 542-548
[44.]
Snjezana Rothkrantz-Kos, M.P. van Dieijen-Visser, P.G.H. Mulder, M. Drent.
Potential usefulness of inflammatory markers to monitor respiratory functional impairment in sarcoidosis.
Clin Chem, 49 (2003 Sep), pp. 1510-1517
[45.]
Cyrile Bergoin, C. Lamblin, B. Wallaert.
Biological manifestations of sarcoidosis (Manifestations biologiques au cours de la sarcoïdose).
Ann Med Interne (Paris), 152 (2001), pp. 34-38
[46.]
B. Baudin.
New aspects on angiotensin-converting enzyme: from gene to disease.
Clin Chem Lab Med, 40 (2002), pp. 256-265
[47.]
U. Costabel, H. Teschler.
Biochemical changes in sarcoidosis.
Clin Chest Med, 18 (1997), pp. 827-842
[48.]
B. Beneteau-Burnat, B. Baudin.
Angiotensin-converting enzyme: clinical applications and laboratory investigations on serum and other biological fluids.
Crit Rev Clin Lab Sci, 28 (1991), pp. 337-356
[49.]
V.M. Lauta.
ACE: physiopathology and role in the diagnosis and prognosis of systemic granulomatosis, neoplasms and lung toxicity caused by antineoplastic agents.
Recenti Prog Med, 81 (1990), pp. 601-613
[50.]
A.C.T.M. Peeters, M.G. Netea, B.J. Kulberg, T. Thien, J.W.M. Van der Meer.
The effect of renin-angiotensin system inhibitors on pro- and anti-inflammatory cytokine production.
Immunology, 94 (1998), pp. 376-379
[51.]
Manfred Schurmann.
Angiotensin-converting en zyme gene polymorphisms in patients with pulmonary sarcoidosis: impact on disease severity.
Am J Pharmacogenomics, 3 (2003), pp. 233-243
[52.]
S. Reitamo, M. Klockars, M. Adinolfi, E.F. Osserman.
Human lysozyme (origin and distribution in health and disease).
Ric Clin Lab, 8 (1978), pp. 211-231
[53.]
Joseph A. Trapani.
Granzymes: a family of lymphocyte granule serine proteases.
Genome Biol, 2 (2001),
[54.]
Robert V. Talanian, X.H. Yang, J. Turbov, P. Seth, T. Ghayur, C.A. Casiano, K. Orth, C.J. Froelich.
Granulemediated killing: pathways for granzyme B-initiated apoptosis.
J Exp Med, 186 (1997), pp. 1323-1331
[55.]
Dong Zhang, P.J. Beresford, A.H. Greenberg, J. Lieberman.
Granzymes A and B directly cleave lamins and disrupt the nuclear lamina during granule-mediated cytolysis.
Proc Natl Acad Sci USA, 98 (2001), pp. 5746-5751
[56.]
I.J.M. ten Berge, P.C. Wever, A.M. Wolbink, J. Surachno, P.M.E. Wertheim, L.H.A. Spaeny, C.E. Hack.
Increased systemic levels of soluble granzymes A and B during primary cytomegalovirus infection after renal transplantation.
Transplant Proc, 30 (1998), pp. 3972-3974
[57.]
P.P. Tak, L. Spaeny-Dekking, M.C. Kraan, F.C. Breedveld, C.J. Froelich, C.E. Hack.
The levels of soluble granzyme A and B are elevated in plasma and synovial fluid of patients with rheumatoid arthritis (RA).
Clin Exp Immunol, 116 (1999), pp. 366
Copyright © 2005. Sociedade Portuguesa de Pneumologia/SPP
Pulmonology
Article options
Tools

Are you a health professional able to prescribe or dispense drugs?